Chapter 8

NOBLE GASES

M.F.A.Dove

8.1	THE ELEMENTS	463
8.2	KRYPTON(II) AND XENON(II)	463
8.3	XENON(IV)	465
8.4	XENON(VI)	465
REPERENCES		466

8.1 THE ELEMENTS

The structural properties of liquid and crystalline argon have been investigated using a molecular-mechanical model comprising 108 Lennard-Jones particles. Calorimetric studies of liquid mixtures of xenon with HCl^2 and $\mathrm{N_2O}^3$ have been carried out by Staveley et al: the enthalpy of mixing with liquid HCl could be satisfactorily reproduced using perturbation theory; on the other hand with liquid $\mathrm{N_2O}$ a positive azeotrope formation takes place. The dixenon cation, $\mathrm{Xe_2}^+$, has been reported previously; Stern and Henderson have shown that it is formed reversibly according to equation (1).

$$3Xe + XeF^{\dagger}Sb_{2}F_{11}^{-} + 2SbF_{5} \rightleftharpoons 2Xe_{2}^{\dagger}Sb_{2}F_{11}^{-} \dots (1)$$

The concentration of ${\rm Xe_2}^{2+}$ in this system was shown to be proportional to the $^{3/2}$ power (approximately) of both the xenon pressure and of the ${\rm XeFSb_2F_{11}}$ concentration, as well as the first power of the ${\rm SbF_5}$ concentration. The authors infer that the ${\rm Xe_2}^+$ cation is strongly bound in a complex with excess oxidant.

8.2 KRYPTON(II) AND XENON(II)

The 1:1 adduct between ${\rm KrF}_2$ and ${\rm BiF}_5$, which is as stable at room temperature as the ${\rm SbF}_5$ analogue, has been investigated at low temperature by Raman spectroscopy. Three adducts of ${\rm XeF}_2$ and ${\rm BiF}_5$,

2:1, 1:1 and 1:2, were also prepared and investigated similarly. 5 The results are of interest in connection with the relative amounts of covalent character in these compounds compared with the ${\rm SbF}_5$ analogues : in all instances it was found that the ${\rm BiF}_5$ compounds are more covalent.

The reaction of norbornene with XeF_2 in CH_2Cl_2 has been used as a mechanistic probe to elucidate the effect of catalyst and temperature (-61° to 25°C) on the liquid phase fluorination. Up to seven products were obtained and the catalysts (HF, HF-py, BF_3 , BF_3 - Et_2O , and C_6F_5SH) had a marked effect on the reaction pathway : an analogous study of the fluorination of norbornadiene demonstrated that catalyst and temperature have less effect in this Xenon(II) fluoride converts 1,3-diketones to monoand di-fluoro products when the reaction is carried out in the presence of a mixture of the BF, complex of (cross-linked) polystyrene-4-vinylpyridine resin and of the uncomplexed resin. 7 The reaction of enol acetates with XeF, in the presence of anhydrous HF gave a-fluoroketones. One of the three possible L-3,4-dihydroxyfluorophenylalanines was found after workup following fluorination of L-3-methoxy-4-hydroxyphenylalanine by XeF, in CH2Cl2: 8 the 6-fluoro compound was isolated in 25% yield.

High rates of surface etching of Ge and Si single crystals by gaseous XeF_2 have been reported by Baklanov et al. ⁹ The rate of attack does not depend upon either the crystallographic orientation of the crystal surface (over the temperature range $5^{\circ}-90^{\circ}$ C) or the vapour pressure (5 x 10^{-2} - 1.4 torr) of XeF₂ used.

Holloway and Schrobilgen 10 have presented 19 F and 129 Xe n.m.r. evidence for the structures of the adducts formed between XeF₂ and nMOF₄, M=MO or W, n=1, 2, 3 and 4. Interestingly some of these adducts contain XeF...M bridges which are non-labile on the n.m.r. time scale at low temperatures in BrF₅ or SO₂ClF solutions: these complexes undergo solvolysis in HSO₃F at $^{-80}$ C, according to equations (2) and (3), on the basis of n.m.r. studies. A group of

$$FXeFMOF_4 + HSO_3F \longrightarrow F-Xe-OS(O)(F)O-MF_4O + HF$$
 ...(2)

$$FXeOS(0)(F)OMF_4O \iff FXeOSO_2F + MOF_4$$
 ...(3)

adducts XeF_2 .mWOF₄, m=2 or 3, were found to be partially iomerised in SO_2ClF , e.g. to the 0-bridged compound (1).

$$FXe-O-WF_4-F-W(O)F_3-F-WF_4O$$
(1)

Jacob has shown that $(\mathbf{F}_3\mathrm{Si})_2\mathrm{O}$ is slowly oxidised by KrF_2 and XeF_2 ; reaction (4) is complete in 8h or less at 25°C (Ng=Kr or Xe).

$$NgF_2 + (SiF_3)_2O \longrightarrow Ng + \frac{1}{2}O_2 + 2SiF_4 \qquad ...(4)$$

8.3 XENON(IV)

Adducts with 1 or ${}^2{\rm BiF}_5$ and ${}^{\rm XeF}_4$ have been prepared and their low-temperature Raman spectra discussed by Gillespie at al. 5 Xenon(IV) fluoride reacts slowly with ${}^{\rm (SiF}_3)_2{}^{\rm O}$, equation (5). 11

$$xeF_4 + 2(siF_3)_2 \circ \frac{ca.1d}{2s^2c} xe + o_2 + 4siF_4 \dots (5)$$

8.4 XENON(VI)

The hexafluoride can be converted conveniently to ${\tt XeOF}_4$ in the gas-phase reaction (6). This reaction is more controllable

$$xeF_6 + (SiF_3)_2O \longrightarrow xeOF_4 + 2SiF_4$$
 ...(6)

than other sources of oxygen, such as ${\rm H_2O}$ or ${\rm SiO_2/HF.}$ The reaction with excess ${\rm (SiF_3)_2O}$ requires several days and leads to total reduction of ${\rm XeOF_4}$ to ${\rm Xe}$ and oxygen. 11

Two new oxofluoroanions of xenon(VI) have been synthesised and characterised by Schrobilgen et al. 12 in the course of a study of the reactions between CsF and excess liquid XeOF $_4$. The product of the room temperature reaction loses XeOF $_4$ at O°C to yield CsF.3XeOF $_4$. The l:l adduct could be prepared from this by the loss of 2XeOF $_4$ at room temperature. The Raman spectra of XeOF $_5$ ion is consistent with C_5 symmetry around Xe so that the lone pair is presumably stereochemically active. The structure proposed for the anion in the 1:3 adduct, (2), has three equivalent XeOF $_4$ units bonded to the fluoride ion.

The first example of the fluorination of 1,3-diketones to the 2-fluoroproduct has been described by Yemul and Kagan. They used the graphite-XeF $_6$ intercalation compound, C_{19} XeF $_6$, as the fluorinating agent: typically the reaction takes place at room temperature for 24h under which conditions monoketones do not react.

$$\begin{bmatrix}
F & O & F \\
F & Xe & F \\
F & F & F
\end{bmatrix}$$

$$\begin{bmatrix}
F & Xe & F \\
F & F & O
\end{bmatrix}$$

$$(2)$$

REFERENCES

- A.E.Galashev and V.P.Skripov, J. Struct. Chem., 21(1980)158.
- L.Q.Lobo, L.A.K.Staveley, P.Clancy and K.E.Cubbins, J. Chem. Soc. Faraday Trans. I, 76(1980)174. 2
- 3 J.R.S.Machado, K.E.Gubbins, L.Q.Lobo and L.A.K.Staveley, J. Chem. Soc. Faraday Trans. I, 76(1980)2496.
- L. Stein and W. H. Henders on, J. Am. Chem. Soc., 102(1980)2856.
- 5 R.J.Gillespie, D.Martín and G.J.Schrobilgen, J. Chem. Soc. Dalton Trans., (1980)1898.
- A. Gregorčić and M. Zupan, Bull. Chem. Soc. Jpn., 53(1980)1085. 6
- B.Zaja and M.Zupan, J. Chem. Soc. Chem. Commun., (1980)759. G.Firnau, R.Chirakal, S.Sood and S.Garnett, Can. J. Chem., 8 58(1980)1449.
- 9 M.R.Baklanov, S.M.Repinskii and A.V.Rzhanov, Doklady Chem., 253(1980)375.
- 10 J.H. Holloway and G.J. Schrobilgen, Inorg. Chem., 19(1980)2632.
- E.Jacob, Z. Naturforsch., 35b(1980)1088. 11
- 12 G.J.Schrobilgen, D.Martin-Rovet, P.Charpin and M.Lance, J. Chem. Soc. Chem. Commun., (1980)894.
- 13 S.S.Yemul, H.B.Kagan and R.Setton, Tetrahedron Lett., 21(1980)277.